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Computational simulations of gait under abnormal conditions provide insights into the 

actions of muscles, its relationships with external reaction forces and motions of the body during 

slips, trips, and falls—the leading causes of occupational injuries worldwide. OpenSimTM, an 

open-source motion simulation software, was utilized to construct musculoskeletal structures and 

create dynamic simulations of body movements. Gaits of eighteen subjects were studied to 

extract experimentally difficult-to-obtained variables under slippery conditions. The joint angles 

and moments of hip, knee, ankle and the forces of four prime muscle groups were analyzed for 

body corrective movements during slip events. Besides, the connections between one’s 

perception of the surrounding environment and their postural alterations to prevent falls are also 

discussed. Hence, this study provides a better understanding on the joint angles, moments and 

muscle forces of human body, evaluates the movement deviations, and contributes to the 

development of predictive injury thresholds during slip events. 
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CHAPTER I 

INTRODUCTION 

1.1 Motivation 

Occupational slips, trips, and falls (STFs) are a leading cause of substantial injuries 

worldwide, especially in slip-prone environments such as hospitals and clinics, posing a great 

burden to the health of workers as well as to the financial loss of the companies. According to 

the US Bureau of Labor Statistics, in the year of 2018, there are a total of 126,850 cases of non-

fatal workplace injuries as well as 791 (15%) out of 5,250 cases of workplace fatalities due to 

STFs [1]. Specifically, STFs are the results of a failure of normal locomotion together with a 

failure of attempts at equilibrium recovery following an induced gait imbalance [2,3]. There are 

two main factors that induce STFs: environmental factors (extrinsic) and human factors 

(intrinsic). For example, the extrinsic factor involves the physical characteristics of the floor 

surface, such as the type, the smoothness, or roughness of the surface as well as the presence of 

contaminant or the interaction of the footwear with the floor [3,4]. In contrast, the intrinsic factor 

strongly connects with the human element, which can be a result of aging, anthropometric 

features, gait speed, muscle fatigue, slipperiness perception, and even disorders of the 

musculoskeletal system [3–5]. The slip propensity is generated and escalated when friction 

between feet and walking surfaces are not large enough to prevent the hindfoot from sliding as it 

pushes off, or the forefoot from sliding when it tries to slow the forward motion of the human 

body’s center of gravity during normal gait [4,6,7]. Different terminologies are used to classify 



www.manaraa.com

 

2 

various STFs cases in term of the slip distances, recovery, and perception of the slipping. 

Particularly, Perkins et al. groups slips into macro-slips and micro-slips depending on the slip 

distance from heel motion to distinguish the slip severity [8]. Strandberg et al., conversely, 

differentiate slips into three categories with respect to the three levels of slip perception and 

recovery: (a) mini-slips (no slipping motion detected), (b) midi-slips (slipping detected and 

recover with minor gait disturbances), and (c) maxi-slips (slipping recovery involving large 

corrective response) [9]. McGorry et al. identified that most hazardous slips happen during the 

time period of 25 ms immediately after heel strike, which plays an important role in the 

development of an unrecoverable slip propensity  [7].  Lockhart et al. also made similar 

conclusions that the time period of < 70-120 ms after the first heel strike has great impact on the 

slip propensity development [10]. Hence, the time period of 120 ms post heel strike is crucial in 

analyzing the slip initiation as well as predicting the potential outcome of the impending slips.  

Subjective perception of the floor slipperiness based on visual perception and 

proprioceptive recognition of balance maintenance also plays a major role in a development of 

slip events [11]. For example, all external factors such as floor color, shape, size, texture, 

lightning, and internal factor such as visual perception, attentiveness and mental clarity can 

affect the outcome of perceiving the slippery surface [12][13]. Due to these factors, the body can 

modify its gait pattern to reduce the possibility of slip events. These modifications might include 

postural changes, and adaptation during gait cycle, decreased step length, low-impact ground 

reaction forces, and altered joint moments [14]. Additionally, in the event of alerted or expected 

slips, muscle activities of the lower extremity appear to be greater and faster. To be more precise, 

the pairs of prime mover muscles in the ankle (tibialis anterior and medial gastrocnemius) and at 

the knee (vastus lateralis and medial hamstrings) were reported to have great activities and 
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muscle co-contraction leading to a stable gait and prevented the slip events from happened [15]. 

As a result, analyzing these prime mover muscles can also be a potential approach in determining 

human biomechanics during a slip event. 

1.2 Slips-trips previous studies 

In general, the biomechanical analysis of slips aids in the evaluation of the description of 

motion of the body-segments as well as the interaction of the footwear-floor interface during a 

slip event [13,16]. Joint angles have been one of the most investigated properties in analyzing the 

characteristics of STFs during both normal and dry conditions [17,18] as well as under slippery 

conditions [19–21]. Particularly, during a normal gait on a dry surface, the ankle is in either 

neutral or slight dorsiflexion position at heel strike, which is followed by a quick roll into 

plantarflexion position as the foot moves to mid-stance phase. During the same period, the leg is 

raised and moved forward while the hip joints decline from its maximum flexion angle at heel 

strike to extension positions throughout the gait cycle [18]. However, this pattern changes when 

the gait is performed on a slippery surface. To be more precise, comparing to the dry condition, 

the gait under slippery condition yields an increase in plantarflexion of ankle joint [20], a greater 

foot-floor angle, and a greater hip flexion angle at heel strike [4], all of which contribute to a 

greater incidence of slips. During the slip, Redfern et al. found that the hip flexion angle was 

minimized while the knee flexion was increased, which could be considered as a corrective 

movement of the human body in an attempt to adjust the center of mass within the base of 

support and prevent potential falls [4]. Various studies have been performed, aiming to 

investigate and analyze such a corrective movement of the body. For example, 

electromyographic (EMG) recordings can indicate when a muscle is active during a gait cycle 

and is often used to study the relationship between muscle activities and gait kinematics, muscle 
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pains or disability and rehabilitation [22,23]. However, an examination of EMG recordings did 

not allow researchers to accurately identify which motion of the body was caused by a particular 

muscle activity [24]. Determining how individual muscles contribute to a specific motion is 

challenging as a muscle can accelerate joints that it does not span and affect the body segments 

that it does not directly attach to [24].  

Hence, creating an integrated understanding of normal gait pattern as well as establishing 

a scientific basis for correcting abnormal movement has always been a major challenge until the 

application of computational simulations during recent years. Particularly, dynamic simulations 

of movement enable one to intensively study neuromuscular coordination, analyze athletic 

performance, and evaluate the internal loading distributions in the musculoskeletal system [25]. 

Muscle-driven dynamic simulations complement experiments as they can provide estimates of 

generally improbable-to-measure variables (such as muscle forces and joint moments) that offer 

insights into both muscle function and human movement control [17]. Moreover, computational 

models and simulations developed using experimental data are usually used to generate the 

muscle-tendon dynamics, musculoskeletal geometry, and multibody dynamics transformations of 

a simulated neural control in a specific movement [17]. For example, simulation can be used to 

identify the sources of pathological movement and determine a scientific basis for treatment 

planning [24]. Additionally, one of the more empowering features of simulations is the potential 

to perform ‘what if’ studies to test various hypotheses, predict a functional outcome, and detect 

irregular behaviors [17]. 

1.3 Overview and Application of OpenSimTM 

Among all the biomechanical modeling software currently used by hundreds of 

biomechanics laboratories around the world, OpenSimTM is one of the most widely used open-
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source platforms. OpenSimTM enables users to develop musculoskeletal structure models and 

create dynamic simulations of movement in a broad range of scenarios, which include analysis of 

walking dynamics, studies of sports performance, simulations of surgical procedures, and 

analysis of joint loads and design of medical devices [26–31]. The graphical user interface of 

OpenSimTM, developed and maintained on Simtk.org—a public repository for physics-based 

data, models, and computational tools—includes a suite of tools for analyzing musculoskeletal 

models, generating simulations, and visualizing results [24]. OpenSimTM also supports a large 

and growing community of biomechanics and rehabilitation researchers and creates a platform 

on which the biomechanics community can build tools, exchange models and simulation for 

reproducing and extending discoveries. This type of platform can help uncover the human 

movement mechanism and assist in the design of a better treatment procedures for individuals 

with disabilities [32]. OpenSimTM unites the interaction of complex neural muscular and skeletal 

systems to create a fast and accurate simulation of movements. One of OpenSimTM applications 

is the ability to compute variables that are difficult to measure experimentally, such as the force 

generated by the muscle or the tendons' fiber length during specific movement [25]. Another 

application of OpenSimTM is to predict novel movements from models of motor control (also 

known as actuator control) such as kinematic adaptations of human gait during different walking 

conditions (inclined, declined, tilted, dry or slippery surface, etc.) [32]. Additionally, OpenSimTM 

can be used to simulate and evaluate the change in the musculoskeletal system following surgery 

or due to human-device interactions such as implants and prostheses—which plays an important 

role in the design of implantable medical prosthesis devices to improve the quality of life of 

patients with paralysis [32]. Likewise, simulations in OpenSimTM are generally validated by how 

closely they agree with the experimentally measured kinematics, kinetics, and EMG patterns of 
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the interested movement, all of which demonstrate the complement between simulations and 

experiments. Finally, once a simulation is generated and accurately tested, it can be further 

analyzed to identify the contributions of a muscle on a particular motion of the body as well as 

its potential outcomes [17]. 

1.4 Objective 

Even though there are various studies that utilize OpenSimTM to analyze gait cycle in 

different environments [26,28,33,34], none of them have investigated OpenSimTM's ability to 

evaluate gait under slippery conditions. More specifically, using gait data from a motion capture 

system, OpenSimTM can extract assorted variables that otherwise wouldn’t be obtained from 

experiments alone. Using OpenSimTM in analyzing slip-trip data taken from previous studies 

proposes a new approach in examining gait cycles with the potential of extracting the more 

insightful information while using the minimum amount of input variables and laboratory 

equipment. For example, in Chander et al.’s works, marker trajectory data of normal gait and gait 

under slippery conditions with different footwears as well as slip perceptions were obtained from 

experiments using a motion capture system, force plates, and EMG sensors [35,36]. However, 

variables such as muscle activations, muscle forces, joint angles, and moments at various 

locations on the human body could not be achieved due to the limitation in the number of 

markers attached to the participants as well as the limited EMG channels (sensors) used in a 

particular time. Hence, if these slip and trip gait data are processed in OpenSimTM to develop a 

corresponding simulation, then (a) the aforementioned immeasurable variables can be obtained, 

(b) the number of equipment used in the experiment can be reduced, and (c) the total number of 

extracted information from a given experiment can be maintained or even increased. Therefore, 

the objective of this study is to determine if simulations in OpenSimTM using slip-trip data (from 
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the Chander et al. study [35]) is a practical alternative method of examining gait data and can 

provide a deeper understanding of the effect of slip perception under multiple gait conditions. 

This can be done by firstly extracting and converting motion capture gait data into OpenSimTM 

formats. Then, various simulation optimizations would be performed on the musculoskeletal 

system in OpenSimTM to attain some pre-determined joints and muscles' joint angles and fiber 

forces. Specifically, three joints (hip, knee, and ankle) and four groups of prime muscles (bicep 

femoris – BF, medial gastrocnemius – MG, tibialis anterior – TA, and vastus intermedius – VI) 

[37] are selected based on the group of joints and muscles analyzed in Chander et al.’s 

experimental studies [11,35]. Due to the limitation of available groups of muscle on the 

musculoskeletal model, the vastus intermedius muscle is chosen instead of the vastus lateralis 

muscle used in Chander et al.’s studies [11,35]. Finally, the simulated data is post-processed and 

plotted in MATLABTM (The Mathworks Inc., Natick, MA) and the conclusions area drawn based 

on these results.  
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CHAPTER II 

METHODS AND SIMULATION SETUP 

2.1 Data Acquisition 

The analyzed slip-trip data used in this work was achieved from Chander et al. slip-trip 

gait analysis [11,35]. Specifically, eighteen healthy male participants (age: 22.28 ± 2.2 years; 

height: 177.66 ± 6.9 cm; mass: 79.27 ± 7.6 kg) were recruited for the data acquisition procedure 

[35]. These volunteers were ensured to have no history of musculoskeletal injuries, cardio-

vascular abnormalities, neurological or vestibular disorders. All recruited participants were 

approved by the University's Institutional Review Board (IRB) and their informed consent and a 

physical activity questionnaire (PAR-Q) were also collected. In the Chander et al. study, the 

experimental set up included a Vicon NexusTM (Vicon Motion Systems Ltd, UK) 3D motion 

capture system with 12 infra-red T-series cameras, two force plates (BertecTM [Bertec 

Corporation, USA] and AMTITM [AMTI Force and Motion, USA]) and a Noraxon TelemyoTM 

DTS 900 EMG system (Noraxon, USA) was used to collect and analyze kinematic, kinetic and 

muscle activity data during gait. A slippery agent, which is a mixture of industrial vegetable-

based glycerol and water with the ratio of 3:1, was applied on the force plate to lubricate the 

participant walking surface [35]. Chander et al. used a uni-track fall arrest system from Rigid 

LinesTM (Millington, TN) to prevent participants from any undesired falls [35]. Four types of gait 

conditions conducted in the study of Chander et al. were assessed including (a) normal gait 

(NG), (b) unexpected slip (ES), (c) alerted slip (AS), and (d) expected slip (US) [35]. The NG 
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trial was comprised of a repeated number of gait cycle under normal dry condition. Whereas, the 

US, AS, and ES trials were conducted under different instructions given to the participants. In 

the case of US trial, the participants would perform a gait cycle without the expectation of 

slippery agent applying on the force plate, making them prone to slip. Then, they repeated the 

experiment again with an instruction that the floor ‘may be slippery’ for AS trial. Lastly, the 

participant would perform the last ES trial with the knowledge of the slippery floor. Hence, the 

three trials US, AS, and ES characterize an increasing scale of participants’ perception of the 

slippery surface. 

In the previous works of Chander et al. [11,35], the participants walked on the lubricated 

surface wearing one of the three footwears (Crocs™, flip-flops, and low top slip resistant shoes). 

However, in this study, only the gait data of the low top slip resistant shoes were extracted, 

converted, and analyzed in OpenSimTM as it is the most stable case among the three, which can 

reduce errors in the conversion process. After selecting the correct gait data from motion capture, 

a series of in-house developed codes were utilized to extract, convert, and analyze the gait cycle 

in MATLABTM R2016a (The Mathworks Inc., Natick, MA). Specifically, there are two types of 

input files for OpenSimTM: the traction file (.TRC), which contains the experimental marker 

trajectories, and the motion file (.MOT), including the set of external load data such as ground 

reaction forces, moments, and center of pressure locations. Another important property when 

converting data from motion capture into OpenSimTM is the coordinate axes. For example, in the 

motion capture system, X and Y axes represents the ground while Z axis is the vertical direction; 

however, X and Z axes span the ground in OpenSimTM and the Y axis represents upward. Hence, 

the coordinate of the markers and forces need to be swapped accordingly from [X Y Z] system to 

[X -Z Y] system.    
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After being extracted and converted, the gait data must be cropped and aligned correctly 

based on a particular time window. According to McGorry et al., the period of 25 ms starting 

from the first heel strike plays an important role in the initiation of an unrecoverable slip 

propensity [7]. Hence, to focus on the slip development post heel strike, the time frame between 

the moment of the first heel strike phase until the following toe-off phase on the slippery force 

plate is chosen to crop the gait data. In Chander et al. works [11,35], whose data consist of 

approximately three gait cycles per trial, this particular time window is considered as the middle 

left heel-strike phase to the middle left toe-off phase. The specific frames of these two 

boundaries were also identified and collected using the motion capture system. Therefore, using 

this information, the converted gait data were cropped properly with respect to the acquired time 

window.  Finally, the gait data were scaled base on the percentage task duration of the time 

window. This was done using interpolation with spline method in MATLABTM R2016a (The 

Mathworks Inc., Natick, MA), in which the gait data were rescaled into 101 points. The x-axis 

values of these points were corresponding to the time stamps of 0% to 100% in the specific time 

window of a distinct trial. The task duration was further divided into three phases: Phase 1 (0%-

20% duration), Phase 2 (21%-83% duration) and Phase 3 (84%-100% duration). According to 

Stockel et al., these phases fully captured the stance phase of the left foot on the slippery force 

plate, which consists of initial contact – weight acceptance phase (Phase 1), single support phase 

(Phase 2) and pre-swing phase (Phase 3) [38]. Then, the average data between all participants for 

each trial at each phase were computed and recorded. The standard deviation between the 

participants were calculated and plotted together with the average values.  

For the purpose of this study, the data of three common joint angles and moments (hip, 

knee, and ankle in sagittal plane, representing flexion movements) as well as the fiber force of 
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four prime movers [37] – BF, MG, TA, and VI – were extracted and analyzed. These data came 

from the subjects’ left foot in the pre-specified time window during four gait trials (NG, US, AS, 

and ES). Then, the NG cases were used as the reference when comparing with the other cases to 

identify the influence of slippery perception on the human’s corrective movements to prevent 

falls. 

2.2 OpenSimTM Model 

For this study, the ‘gait2392’ human musculoskeletal model, developed by Delp et al. 

[24], were used to analyze the slip-trip gait data. Included with the OpenSimTM Distribution, the 

‘gait2392’ model featured 23-degree-of-freedom with 92 musculotendon actuators in the lower 

extremities and torso of the human musculoskeletal system [39]. Unlike its counterpart—model 

‘gait2354’, the ‘gait2392’ model is a complex version with more muscles, aiming to improve 

simulation accuracy for demonstrations and educational purposes [39]. Specifically, this version 

was configured to have three degrees of freedom at the hip (flexion, adduction, and rotation), one 

degree of freedom at the knee (flexion), and two degrees of freedom at the ankle (flexion and 

rotation). Meaning that, for this particular model, OpenSimTM was focused on analyzing the gait 

cycle of the hip, knee, and ankle with respect to the flexion plane (i.e., sagittal plane or anterior-

posterior direction).  

Besides, this model consists of three main components: bone, muscle and actuator. Bones 

can be imported from computer-aided design (CAD) files of individual bone, which can also be 

replaced by prosthesis designs if needed. Muscles (shown as red tube on the model) are created 

using a number of muscle points, which indicate the route of a muscle along the body and are 

connected together by the muscle paths. To accurately simulate the muscles’ behaviors due to the 

body movements, there are various options in OpenSimTM to adjust and modify the muscle 



www.manaraa.com

 

12 

points and paths so that they can wrap around a bone when a specific joint angle is reached. 

Muscles are mathematically represented as a parallel spring and damper system in OpenSimTM. 

The last component is the actuator, which is an invisible component that attached at each joint 

and muscle to apply the corresponding moments and forces when needed. Besides the muscle 

actuator, which is the muscle itself, there are two other type of actuators, reserve and residual. 

Reserve actuators are on the joints and are used to drive the model when no muscles are present 

or when muscles are not sufficient to track input kinematics. Residual actuators are located on 

the base segment (pelvis in this case) to supply additional forces that accounted for the errors in 

the model. Especially, residual actuators are recruited when the kinematic that do not balance 

with experimental ground reaction forces. The residual forces created by the residual actuator 

compensate for the dynamic inconsistencies between kinematic and kinetic data. 

Additionally, based on the studies of Chander et al. [11,35], 16 virtual markers were 

placed on the model according to the Helen-Hayes marker system, which is one of the most 

common marker arrangements utilized in 3D motion analysis [40]. Notably, the Helen-Hayes 

marker system had been applied efficiently in routine clinical practice to study the mechanics of 

the gait patterns of many patients with various conditions [41]. In this case, each of the limbs 

contained eight virtual markers, located from the pelvis down to the toes. This specific 

arrangement of marker locations was identical to the markers placed on the subjects during the 

experimental trial in Chander et al. studies [11,35]. The illustration of the marker locations on the 

musculoskeletal model is shown in Figure 2.1 below. 
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Figure 2.1 The illustration of ‘gait2392’ musculoskeletal model in OpenSimTM with 16 virtual 

markers attached based on the Helen-Hayes marker system [40]. 

The acronyms of 16 virtual markers show their location on the body based on the bony 

landmarks, starting from the pelvis to heels. 

Additionally, Figure 2.2 below describes the three interested joints: hip, knee and ankle 

joints, all of which are shown in the flexion plane. The terminology of the joint angle is also 

described in this figure. For the ankle joint, taking the position of 90 degree to the tibia bone as 

the origin, the dorsiflexion angle is the upward bending direction, indicated by the positive angle. 

In contrast, the plantarflexion angle is the downward bending motion, indicated by the negative 

angle. Similarly, for hip joint, take upright position as the origin, the flexion angle is the positive 

angle, in which the leg moves forward, while the extension angle is the negative angle, in which 

the leg moves backward. Using similar concept, also taking upright position as the reference 
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point, if the knee bending backward, it is the negative flexion angle; if it is bending forward, it is 

the positive extension angle. Due to the human skeletal structure, unless an injury happens, the 

knee rarely goes to the extension position, usually less than 2-3 degree in extension angle [42]. 

 

Figure 2.2 The illustration of ‘gait2392’ musculoskeletal model in OpenSimTM with the 

definitions and terminologies for joints angles of hip, knee, and ankle joints [40]. 

For ankle joints, positive angle is dorsiflexion motion, negative angle is plantarflexion motion. 

For knee joints, positive angle is extension motion, negative angle is flexion motion.  

For hip joints, positive angle is flexion motion, negative angle is extension motion. 

2.3 OpenSimTM Simulation 

There are four different steps to generate an accurate gait simulation in OpenSimTM. In 

step 1, the human musculoskeletal model was scaled to match the anthropometry of an individual 
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subject [24]. Specifically, as shown in Equation 2.1, a scaling factor (𝑠𝑖) was computed by 

dividing the relative distance (𝑒𝑖) between pairs of markers obtained from the motion capture 

system and its corresponding virtual markers located on the model (𝑚𝑖). In Equation 2.2, the 

average scaling factor (𝑠𝑎𝑣𝑔), which is the mean of all segments’ scaling factors, can be used in 

case the difference between the experimental and virtual pair of markers are too large. The mass 

properties for each body segment were also included to scale and preserve the actual mass of the 

subject proportionally. Moreover, the lengths of muscle fiber and tendon were independently 

changed based on the scaling factors so that the overall percentage of each segment on the 

actuators remained the same. In this step, the input data will be the participant’s body weight, the 

virtual marker system as well as the experimental marker trajectories. The result will be a scaled 

musculoskeletal model that match the specific participant. 

𝑠𝑖 =
𝑒𝑖
𝑚𝑖
  

(2.1) 

𝑠𝑎𝑣𝑔 =
1

𝑛
∑𝑠𝑖 

(2.2) 

Next, step 2 involves extracting data using Inverse Kinematics (IK) and Inverse 

Dynamics (ID). By definition, kinematics is the study of motion without considering the forces 

and moments that produce that motion. Hence, Inverse Kinematics is the process that computes 

the joint angles for a musculoskeletal model that best reproduce the motion of a subject. By 

using the marker trajectories from the motion capture system, the IK tool in OpenSimTM was 

applied to identify the generalized coordinate values, consisting of joint angles and translations, 

that best recreate the raw marker data taken from the motion capture [24]. Mathematically, step 2 

was formulated as a least-squares optimization problem that minimizes the differences between 
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the measured marker locations and the virtual marker locations while subjecting to the joint 

constraint pre-defined in the musculoskeletal model. Therefore, for each frame in the 

experimental kinematics, OpenSimTM would minimize a particular weighted squared error 

equation (shown in A.1) and calculate the optimal locations for each virtual marker for each 

frame in the experimental kinematics. Thus, the generalized coordinate trajectories (joint angles) 

can be calculated and also stored in a motion file (.MOT). 

After that, the Inverse Dynamics is performed. It is defined that dynamics is the study of 

motion and the forces and moments that produce that motion, in which the estimation of mass 

and inertia is required. Therefore, in Inverse Dynamics, OpenSimTM estimates the forces and 

moments that cause a particular motion taken from IK step. To be more specific, an ID tool, 

which used the computed joint angles together with the experimental ground reaction forces and 

moments, was also utilized to determines the generalized forces (e.g., net forces and torques) at 

each joint responsible for a given movement [43]. By combining the given kinematics data 

describing the movement of the model and the external loads applied to it, the ID tool used this 

information to execute an inverse dynamics analysis. As a result, OpenSimTM can estimate the 

net forces and torques at each joint which produced the movement for all DOF on the model. 

These results could be used later to infer how muscles were utilized in a particular motion.  

Even with the use of IK and ID tools, the measured reaction forces and moments were 

often dynamically inconsistent with the model kinematics due to the experimental error as well 

as the modeling assumptions. Therefore, step 3 in OpenSimTM‘s workflow, called residual 

reduction algorithm (RRA), focused on optimizing the computed generalized coordinates in the 

previous steps to be dynamically consistent with the experimental inputs [24]. This was done by 

reducing the residual forces and moments in the Modified Newton’s second law equation (A.2), 
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which presented the relationship between the measured ground reaction force, gravitational 

acceleration, and the accelerations of the body segments [24]. In this case, the residual was 

defined as the effects of modeling and marker processing errors that accumulated gradually and 

led to a large nonphysical compensatory forces [17,44]. Specifically, to reduce the residual 

forces and moments, the average values of these residuals at each actuator were calculated over 

the duration of the movement. Then, the RRA modified the model mass parameters (center of 

mass locations, etc.) based on these averages, aiming to decrease the average values of the 

residuals. This can be done by altering the torso mass center of the body (i.e. to correct the 

excessive leaning due to inaccuracies in mass distribution and geometry of the torso) and 

redistributing a desired mass change (computed from the residual forces) proportionally among 

body segment [24,25]. These adjustments would affect the initial joint kinematics of the 

musculoskeletal model, making it consistent to the experimental ground reaction forces and 

torques while maintaining the accurate and desired biomechanical results. Moreover, an upper 

limit could also be applied by the users on the magnitudes of the residuals to reduce the 

computational cost and simulation time. 

Lastly, in step 4, the computed muscle control (CMC) tool in OpenSimTM was used to 

analyze and create a set of muscle excitations that drove the generalized coordinates of a 

dynamic musculoskeletal model towards the desired kinematic movement [45]. CMC did this by 

using a combination of proportional-derivative control and a static optimization criterion to 

distribute forces across synergistic muscles and establish a forward dynamic simulation that 

matched the adjusted kinematics movement taken from the previous step [24,45]. Notably, in 

OpenSimTM, static optimization (SO) tool is an extension from ID that further use the known net 

joint moments to solve for the unknown individual muscle forces at each instant in time by 
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minimizing the sum of squared muscle activations. The SO can either use the input from IK or 

from RRA results. If the IK input is used, it needs to go through a Butterworth lowpass filter 

(6Hz by default) to reduce the noise; while the RRA result can be use as it is. The SO will then 

compute and store the time history of the muscle activation and force to analyze human postural 

adjustments in quick manner. Thus, depending on the size of the dataset, SO tool can be used 

separately to extract muscle force data and reduce the simulation runtime. 

On the other hand, CMC tool, which is an enhanced, more complex version of SO, 

occupied much higher computational resources comparing to the other tools in OpenSimTM, 

causing it to be used on small and specific time frames of interest rather than applying on the 

whole simulation [26]. The procedure of CMC tool started with the estimation for a set of 

desired accelerations that could drive the model coordinates toward the experimentally-derived 

coordinates [46]. Since the forces that muscles apply to the body cannot change instantaneously, 

the desired accelerations computed with the CMC tool must be generated in a small time step T 

[46]. This time step T was often determined to be 0.01 seconds for musculoskeletal model as it 

not only was short enough for adequate control but also long enough for muscle force 

modification [45]. Then, the actuator control needed to achieve the desired accelerations was 

calculated in term of muscle excitation or fiber force. This led to the use of static optimization to 

allocate the loads across synergistic actuators in the model [46]. Finally, the CMC algorithm 

conducted a standard forward dynamic simulation, advancing the analysis forward in time by T. 

The dynamics simulation was modeled by relating the time rate of change of muscle activation to 

muscle activation and excitation, whose equation is shown A.3 [24]. All the earlier steps—

computing the desired accelerations, static optimization, and forward dynamic simulation—were 

repeated until time was advanced to the end of the desired movement interval, designated by the 
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user. After these steps, the results of the simulation were either plotted in OpenSimTM or 

exported to other statistical processing software for further analysis. 
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CHAPTER III 

RESULTS 

3.1 Joint Angles 

Figure 3.1 below illustrates the joint angles of the hip, knee, and ankle during the time 

period of interest for 18 participants under all reported trials with different slippery conditions. 

Comparing to the normal gait condition, the patterns of the other three cases change with respect 

to the increase in slippery perception of the participants. Particularly, the participants appeared to 

intentionally alter their gait postures to prevent the slip event from happening. Moreover, there 

are some fluctuations in angle for most of the slippery cases, especially in US trials, all of which 

represent the occurrence of slip events as well as potential falls during the experiments. As the 

participants lose their balance due to the slips, their body will perform a series of corrective 

movements that affect the joint angles, joint moments, and all of their associated muscle groups, 

resulting in the fluctuation in the recorded gait data. The reported average values for all the gait 

trials in 0 below also show the joints and muscle corrective movements. 
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Table 3.1 The average angle values of hip, knee and ankle joint under different gait 

conditions in three phases. 

The average joint angles data are recorded based on each joint (column), phases (sub column), 

and gait condition (row). 

These results describe how the body alter its posture depending on the slip perception. 

Taking the angle at phase 3 of the ankle joint as an example, the foot is in 1.1o dorsiflexion angle 

in normal gait, then it decreases into 2.56o plantarflexion angle in US trial. This shows most of 

the participant did slip in this trial and try to bend down the ankle as a mean to grip the ground 

and maintain balance, which is a common behavior of the body during a slip event [47]. Then, 

for the next AS trial, even though they were told that they might or might not slip, the 

participants still got scared and overcompensated their gait posture, making it stiffer and 

resulting in over 5 degree in dorsiflexion (bending upward) during toe off phase. Finally, for ES 

trial, since they knew exactly that they were about to slip, their body got relaxed and tuned in 

their corrective movement just enough to sustain their balance, as shown in the 2.55o dorsiflexion 

angle in 0. Similar pattern can be seen in Phase 1 and 2 of the ankle’s joint angle. These data not 

only confirm how the body try to recover from a slip event in US trial but also clearly illustrate 

its corrective movement during AS and ES trial due to an increase in slip perception. 

To be more specific, in Phase 1 (heel strike), the AS and ES slippery conditions have 

higher flexion angles at the knee joints (10%) as well as higher dorsiflexion angles at the ankle 

joints (80%) compared to the dry condition. Especially, the hip flexion angles are smaller in 

Avg. Angle 

(Degree) 
Hip Knee Ankle 

  Phase 1 Phase 2 Phase 3 Phase 1 Phase 2 Phase 3 Phase 1 Phase 2 Phase 3 

NG 12.77 -14.68 -27.83 -12.01 -10.22 -27.32 -4.55 7.39 1.10 

US 11.34 -15.67 -29.24 -11.04 -9.39 -27.93 -6.42 4.43 -2.56 

AS 11.67 -15.25 -30.47 -11.18 -10.02 -24.73 3.10 13.12 5.57 

ES 10.74 -16.77 -28.48 -10.36 -9.69 -31.10 1.58 12.99 2.55 
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these two slippery trials as compared to the normal gait (around 15% smaller in average). This 

change leads to a smaller and shorter stride in the gait pattern of participants under slippery 

condition, which describes one of the corrective movements of their body to keep balance as well 

as to prevent the slips. Additionally, an increase in hip extension of the slippery trials, as shown 

in Phase 2 and 3, indicates that the leg stayed on the ground longer during the midstance phase of 

the task duration, leading to a boost in gait stability of the participants. In contrast, knee joints 

showed an increase flexion angle to its dry-condition counterpart, at approximately 5%. These 

results mean that, unlike hip joints, the knee joint still maintains its function of preserving the 

gait pattern while maintaining a strong support that connects the upper to the lower extremities 

during gait under slippery conditions. Furthermore, the ankle joints’ angles yielded the largest 

change regarding magnitude when compared to the normal gait data, with a change from 

plantarflexion to dorsiflexion in Phase 1, then followed by the increase of 70% and 120% in 

dorsiflexion angles in Phase 2 and 3, (-4.55 to 1.58 degree, 7.39 to 12.99 degree, 1.1 to 2.55 

degree, respectively). These large changes in the angles of ankle joints shorten the range of 

motion of the ankle, making it stiffer and leaning the body backward during the gait as compared 

to the normal gait pattern. Therefore, this adjustments in body posture keeps the center of mass 

of the upper body falling into a range of support of the lower limbs, aiming to sustain the 

stability of the human body. 
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Figure 3.1 The joint angles of left hip, knee, and ankle joints of the participants during the 

time period between the left heel strike and toes off phase during each of the four 

slippery conditions. 

The gray lines show results for each of the participant while the red line indicates the average 

value of all participants in a particular trial, followed by a red-shaded region that represents the 

standard deviation of the average value during the task duration. The blue-dotted lines separate 

the task duration into Phase 1, Phase 2 and Phase 3. 

Another approach to identify possible corrective movements of the body is to analyze and 

compare the joint angles and moments among the three slippery conditions. Particularly, the 

ankle joint gait data under AS and ES condition is significantly larger from that of the US 

condition. Opposite from the US trial, the ankle joints of the AS and ES trial had a slight increase 
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in dorsiflexion in Phase 1 and a sharp increase dorsiflexion in angles in latter phases. The 

influence of the slip perception had altered the gait posture of the participants during an alerted 

and expected slip events, which not only raises the coefficient of friction among the foot-floor 

interface, but also reduces the fluctuation of the center of mass, keeping the center of mass closer 

to the body’s line of gravity and thereby ensuring the balance of the gait cycle. Furthermore, 

knee joint angles do not have any remarkable changes among the three slippery trials (less than 

5%). The largest change in the knee joint occurs in the flexion angle and increase as the slip 

perception of the participants increase. This transformation in gait data means that the knee is 

stiffer than the NG trials in order to reduce the generated moment at the knee joints, stabilize the 

center of mass, and support the upper half of the body to alleviate the risk of falling. Likewise, 

while having a minor rise in extension angles, the hip joint angles in ES trials are smaller in term 

of flexion angle (15% different), which result in a shorter stride comparing to US trials. Overall, 

among the three gait trials under distinct slippery condition, the knee joints’ angles tend to be 

fixed for body support while the ankle joints adapt and adjust the angle to reduce the moment, 

increase the friction force with the floor, and stabilize the body’s center of mass. Meanwhile, the 

hip joints are only varied slightly and responsible for accommodating the postural change by 

aiding the ankle joints in balancing the upper body. 

3.2 Joint Moments 

Additionally, the effect of the slippery conditions can be illustrated using the data of joint 

moments in Figure 3.2 and Table 3.2. In general, the joint moments at three joints during three 

slippery conditions are smaller comparing to that of the dry condition. Among the three slippery 

trials, the AS cases yielded the largest joint moments comparing to the US and ES cases, which 

is corresponding to the overcompensation of the body movement after experiencing a slip event 
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in the prior US trial. These results also prove that, as the perception for slip propensity increases, 

the body produces less torques as a corrective response to the slippery environment in order to 

maintain a strong support for the upper body as well as stable the center of mass of the core. 

Moreover, the data of the hip, knee and ankle from Table 3.2 clearly describes this decline in 

joint moments. For example, hip moments in Phase 1 during ES condition (14.91 N.m) are 

significantly smaller than that of the NG, US and AS cases (53.19 N.m, 23.06 N.m, 25.31 N.m, 

respectively). When comparing the joint moments among the three slippery cases, ES case also 

have the smallest moments at all joints, which directly link to the participant’s increase in 

awareness of the slippery floor. 

 

Table 3.2 The average moment values of hip, knee and ankle joint under different gait 

conditions in three phases. 

Avg. 

Moment 

(N.m) 

Hip Knee Ankle 

  Phase 1 Phase 2 Phase 3 Phase 1 Phase 2 Phase 3 Phase 1 Phase 2 Phase 3 

NG 53.19 293.23 254.05 102.26 280.27 209.63 122.05 221.68 136.12 

US 23.06 247.46 195.17 76.16 236.44 154.03 101.38 180.91 93.32 

AS 25.31 269.51 256.59 79.30 258.22 209.23 105.32 196.39 130.21 

ES 14.91 249.45 200.74 63.35 231.92 160.16 87.91 170.22 95.21 

The average joint moments data are recorded based on each joint (column), phases (sub column), 

and gait condition (row). 
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Figure 3.2 The joint moments of left hip, knee, and ankle joints of the participants during the 

time period between the left heel strike and toes off phase during each of the four 

slippery conditions. 

The gray lines show results for each of the participant while the red line indicates the average 

value of all participants in a particular trial, followed by a red-shaded region that represents the 

standard deviation of the average value during the task duration. The blue-dotted lines separate 

the task duration into Phase 1, Phase 2 and Phase 3. 

Notably, the US gait trials as shown in Figure 3.2 often contain higher knee extension 

angles and ankle plantarflexion angles, which proves the occurrence of a slip events in these 

trials. When slips happen, the foot of the participant will slide on the slippery floor and may 

induce falls, leading to an increase in knee and ankle joints angles. An unexpected slip event also 

accompanies by an uncontrolled muscle response prior to the slip incident, which was shown by 

the smaller joint moments in US trials. This means that, without the knowledge of the slip 

surface, the body would not have any corrective responses to increase its control over the muscle 
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groups in the lower extremity. However, these patterns can be reduced by raising the 

participants’ perception of the slippery floor. The effect of perception can be proved by using the 

joint angles and joint moments data of ES trials, in which all the participants had the knowledge 

about the slippery surface that they would walk on. In this case, the results from ES trials of all 

three joints show restricted joint angles, lower joint moments and declined range of motion, 

which represents the body adjustment of the gait pattern in order to maintain the balance as well 

as prevent the slips. 

3.3 Muscle Forces 

Similarly, the fiber forces extracted from the gait trials also describes the body’s postural 

adjustments through different groups of muscle to preserve balance and avoid falling. Figure 3.3 

consecutively demonstrate the fiber force of four prime-mover groups of gait trials under three 

slippery conditions as well as normal environment. Additionally, the average fiber force values 

of each of the prime-mover groups are also computed and reported in Table 3.3. Among the four 

muscle groups, the fiber forces of TA and VI yield the most fluctuation across different trials. 

However, this pattern starts to decrease as the slip perceptions of the participants increase in the 

following slippery trials. Besides, there are considerable fluctuations of force magnitudes in 

Phase 1 and Phase 3 of task duration in all the slippery trials, especially the US condition. These 

trends of rapidly increasing fiber force (for TA and VI) or decreasing fiber force (for BF and 

MG) around the beginning and the end of the task duration illustrate the influence of slip events 

on the gait cycle of the participant. These trends also explain the similar pattern seen in the fiber 

force data of AS and US trials, in which slips occurred and altered the magnitude of the fiber 

force in the prime-mover muscle groups. The magnitudes of fiber forces in ES trials are 

generally smaller and more balanced compared to the other two slippery trials, which indicates 
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the response from the body's corrective movements in the attempt to maintain postural stability 

under the impact of slippery surface. 

 

Figure 3.3 The fiber forces of the four prime-mover muscle groups of the participants during 

the time period between the left heel strike and toes off phase during NG, US, AS 

and ES conditions. 

Gray lines – participants’ fiber force values, red line – average value of all participants, red-

shaded region – corresponding standard deviation, blue-dotted line – indicate ending of Phase 1 

and Phase 2. 
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Table 3.3 The average fiber force values of the four prime-mover muscles under different 

gait conditions in three phases. 

Avg. 

Force  

(N) 

Biceps Femoris (BF) Vastus Intermedius (VI) 

  Phase 1 Phase 2 Phase 3 Phase 1 Phase 2 Phase 3 

NG 30.34 6.35 4.68 416.16 960.75 743.89 

US 59.45 6.32 4.45 330.63 872.00 538.74 

AS 53.80 6.21 4.43 336.36 913.89 794.18 

ES 62.74 6.67 4.45 287.67 862.26 574.40 

 

Table 3.3 (continued) 

Avg. 

Force  

(N) 

Medial Gastrocnemius 

(MG) 
Tibialis Anterior (TA) 

  Phase 1 Phase 2 Phase 3 Phase 1 Phase 2 Phase 3 

NG 21.44 16.42 5.47 697.51 590.64 827.39 

US 26.03 16.10 29.46 632.79 599.32 741.72 

AS 22.65 16.75 6.59 630.19 597.33 834.55 

ES 29.32 27.38 4.51 580.89 567.44 724.14 

The average muscle forces data are recorded based on each joint (column), phases (sub column), 

and gait condition (row). 

The TA muscle, associated with dorsiflexion ankle joints, and VI muscle, associated with 

extension knee joints, has a greater change in force magnitudes compared to the other muscles, 

especially in Phase 1 and Phase 3. The TA and VI muscles were utilized to push the body 

forward during the stance phase, in which they generated forces and moments to counter the 

ground reaction force resulted from the interaction between the foot and the ground. The slight 

decreases in magnitude of TA and VI muscles (10-30% decrease) show the body’s postural 

adjustment to stabilize gait under slippery condition. Alternatively, the MG muscle (associated 

with plantarflexion ankle joints) and BF muscle (associated with flexion knee joints) have a 

minimal change in force magnitudes, which is due to the limited use of plantarflexion ankle 

joints and flexion knee joints during the stance phase of a gait cycle [38]. According to Figure 

3.3, BF and MG are utilized during the Phase 1 of the task duration (heel strike), when the heel 
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touched the ground and the muscles were recruited to maintain postural stability as well as 

generate enough forces and moments to roll the foot onto the surface (entering midstance). 

However, there is an exception in the muscle force of MG at Phase 3 during US trials. The sharp 

increase in MG muscle forces in Phase 3 (toe off) represents an initiation of a slip event due to 

the slippery surface. In this case, the participants tried to maintain their posture by bending the 

ankle downward to grab the ground with their toes and increase the coefficient of friction of the 

foot-floor interface, thus, utilizing MG muscle to perform plantarflexion motion at the ankle. 

These results are correlated to the joint angle and joint moment values as they match the 

responsiveness of each joint when being subject to the corrective movements of gait postures 

under slippery conditions. When comparing the fiber forces of the slip trials among each other, a 

similar result with the joint angles analysis can be derived. To be more specific, the magnitudes 

of the fiber forces tend to get smaller as the slip perceptions of the participants increase. This 

result can be seen in the force values of BF and VI, which describes the responses of hip and 

knee joints to the corrective movements of the body. This means the knee joints reduce the 

moment and become stiffer supports for the body, while hip joints slightly adjust the stride to 

accommodate the postural change and stabilize the upper body.  

In contrast, even though there are some errors in a few trials during data collection 

process, the extracted fiber force of MG and TA rises proportionally to the participants’ 

perception of slips (in AS and ES trials). This result proposes that, as their perceptions for a 

potential slip increase, the participants tend to put more control on their ankle joints to preserve 

their balance in the form of leaning backward to minimize the body center of mass excursions 

outside the base of support of the lower limbs or reducing angular velocity to increase the 

coefficient of friction between the foot-floor interface. Notably, this frequent use of TA muscle 
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over other prime-mover muscles to balance the body during gait under slippery conditions might 

pose a potential site of injury around TA muscle, which can also be one of the reasons that 

explain the typical ankle-related injuries due to STFs. 
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CHAPTER IV 

DISCUSSION 

The purpose of this study was to analyze and extract the biomechanical variables of joint 

kinematics and muscle activities of the slipping leg during slip initiation of participants when 

exposed to dry gait, unexpected, alerted, and expected slips using OpenSimTM musculoskeletal 

computational models and simulations. These simulations reveal significant interactions between 

slip perceptions of participants and the biomechanical variables attained from OpenSimTM in 

terms of joint angles and fiber forces. On average, greater plantarflexion angle and greater 

muscle forces (VI and TA) were seen on the ankle-related joints and muscles, which support the 

previous findings of Chander et al. [11,35]. Knee and hip joints, in contrast, showed no 

significant results comparing to the ankle joints at heel strike. This result proposed that, at heel 

strike, the modifications of gait posture in the lower body appeared to be affected mainly by the 

distal ankle joints, while the knee and hip joints did not leave any remarkable influence on the 

gait adjustment until post heel strike.  

This finding supports a previous study of Chander et al. that during a slip event, the ankle 

joint attempted to go further in plantarflexion angle to prevent the slips while the knee and hip 

joints was forced into a smaller amount of flexion as the lower limbs was abruptly sliding toward 

the anterior direction [11]. Specifically, the greater plantarflexion during slip events taken from 

the OpenSimTM analysis supported a study from Shroyer et al., which indicated this increased 

plantarflexion angle was a recovery mechanism of the body to maintain balance by gripping the 
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footwear using the toes [48]. Moreover, the greater plantarflexion ankle angle during slip trials 

could also be seen as an attempt to make contact with the floor in a flatter foot position to extend 

the contact surface area of the foot, thereby preventing the occurrence of slips [6,14].  

Furthermore, the muscle activities from the lower extremity that involves in the reactive 

response of the human postural control system also play an important role during a slip and for 

an impending slip [11]. A muscle activation pattern study under slippery conditions by Chambers 

et al. suggests an increased power of the TA muscle, as well as duration, was noted during 

hazardous slips as an attempt to achieve flat-foot, an important aspect in slip recovery and 

continuation of gait [15]. Based on the activation of the medial hamstring, medial gastrocnemius 

and vastus lateralis (corresponding to BF, MG, and VI in this case), Chambers et al. also 

identified two detrimental effects on balance recovery and gait cycle progression: (a) delayed 

anterior movement of the body COM over the base of support, and (b) knee buckling—decreased 

knee extension in stance to prevent fall. The fiber force results extracted from OpenSimTM did 

support the previous literature findings in Chambers et al.’s work [15]. Additionally, the muscle 

force values of the prime muscle groups are also supported by the data in Heintz et al. studies 

[49]. In this study, Heintz and her team utilize EMG data to compute muscle force during normal 

gait using static optimization algorithms. The forces of various muscle groups were computed 

and Heintz’s results are closely corelated to the data in Figure 5 and Table 3.  

 The last factor that affects the body corrective movement in response of an 

impending slip events is the perception of a slip hazard. There are several elements that have 

impact on the slip perceptions such as the prior knowledge of a slip-prone environment, the 

visual perception in the presence or absence of lighting and the mental workload of the 

participants [50]. According to previous literature, the anticipation of slippery floor allowed the 
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participant to the reduce potentials slip events by adjusting the biomechanics of gait [19,47]. 

These gait adaptations consisted of a reduction in foot-floor angle to create a more flat foot 

position at heel strike [5], the minimization of normal and shear forces during stand phase [6], all 

of which lower the frictional requirements needed to prevent slips. These findings are similar to 

the results from the joint angles and fiber forces derived from OpenSimTM. As the participants’ 

perceptions of the slip increased, the ankle joints had lower dorsiflexion and higher 

plantarflexion angles, which hindered the body from leaning forward and reduce the fluctuation 

of the center of mass, resulting in a more stable gait pattern ranging from US to AS to ES trials. 

As a result, using the data extracted from OpenSimTM, it can be concluded that the knowledge 

and the anticipation of the slippery flooring surface was crucial in the modification of gait 

pattern that controlled by the human anticipatory postural control system, thereby preventing 

slips and slip-induced falls. 

Besides the ability to extract hard-to-identify data from experiments, there are several 

other applications of OpenSimTM in the analysis of gait and human biomechanics. One of the 

most promising potential of OpenSimTM is the ability to perform various ‘what-if’ studies to test 

hypotheses and predict the functional outcome such as emergent behaviors or injury threshold 

[17]. OpenSimTM simulations can be used to identify new movements and establish the 

relationships between different posture, muscle forces, joint angle, and ground reaction force, all 

of which enable researchers to more readily use predictive simulation as a tool to address clinical 

conditions that limit human mobility [51]. Moreover, OpenSimTM can also be utilized to 

facilitating the interactions between modelers and experimentalists [24]. Precisely, modelers 

need experimentalists to acquire parameters used in simulations as well as data to validate the 

simulation results. Conversely, experimentalists can benefit from the interpretation of modelers 
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on the biomechanical experiments in term of theoretical framework, data analysis and the need 

for improved experimental protocols. For example, OpenSimTM can be treated as an analysis tool 

in athletic training and medical rehabilitation by integrating the human biomechanics into 

musculoskeletal models to assess, predict, and mitigate injury risk of athletes or patients under 

various circumstances. If coupled with high-quality experimental measurements, subject-specific 

simulations on OpenSimTM can help elucidate how elements of the neuromusculoskeletal system 

interact to produce a suitable movement for athletes or to improve the outcomes of treatments for 

patients with movement disorders [24,27,34]. Therefore, it can be concluded that the accuracy of 

a simulation firmly depends on the fidelity of the underlying mathematical models of the 

musculoskeletal system and its corresponding assumptions based on limited experimental 

evidence [25].  

To improve the accuracy of the current OpenSimTM simulations on gait under slippery 

conditions, a complex musculoskeletal model with a larger number of muscles, joints and degree 

of freedoms is needed to fully capture the whole-body movements and its corrective movement 

in response of the slippery conditions. A different marker system with larger number of markers 

is also needed, especially for the upper body, as they can stabilize the musculoskeletal model 

during data extraction process, which not only can reduce the marker errors but also boost the 

runtime of the simulation, enhance the accuracy of the result and track the gait cycle more 

efficiently. Moreover, the lengths of major body segments of the participant (femur, tibia, etc.) 

are needed in future study to improve the musculoskeletal model scaling process in OpenSimTM. 

For this study, the average scaling factor was used for all participants to scale their body 

segments onto the model. Since different participants have different segment dimensions, using a 

generalized ratio in scaling might affect the lengths of the muscle groups attached to a body 
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segment, which eventually alter the maximum fiber forces that they can produce. Lastly, to 

further improve the simulation results from OpenSimTM, an updated list of muscle properties is 

needed. Currently, the musculoskeletal model used in this study (‘gait2392’) utilized the muscle 

foundation (such as muscle fiber length, tendon length, max isometric force, pennation angle, 

contraction velocity, etc.) from Delp et al. to drive the simulation and calculate its result [52]. 

However, since these muscle properties are collected from cadaveric experiments during the 

1990s, which was outdated and also different from the muscles of living beings, a clinical study 

using current technology should be performed to identify and collect these muscle properties to 

advance the medical and biomechanical studies on the human body. If such a muscle properties 

is integrated with OpenSimTM, the simulation results will be improved significantly and the 

connection between human muscles/tendons/ligaments with biomechanical injuries and failures 

can be investigated thoroughly. 
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CHAPTER V 

CONCLUSION 

The current study uses OpenSimTM musculoskeletal models and simulations to analyze 

the slips and trips gait data under slippery conditions.  The participants were exposed to dry gait, 

unexpected, alerted, and expected slips, then various biomechanical variables, pertinent to injury 

biomechanics, that are not experimentally measured were obtained (muscle activations, muscle 

forces, joint angles and moments). The motion capture gait data from Chander et al. [11,34] was 

imported into OpenSimTM, then data of the hip, knee and ankle join angles, as well as the fiber 

force of four primary muscle groups (BF, MG, VI, TA) were extracted and post-processed in 

MATLABTM. 

In general, during the slip process, the joint angles of the plantarflexion ankle increase to 

preserve the traction between the lower extremity and surface, and thus the friction force with the 

floor, to stabilize the body’s center of mass and reduce the slip movement. Meanwhile, the joint 

angles of the knee were shown to be fixed to support the body, and the hip joint angles slightly 

adjusted to balance the upper body as well as accommodate the postural change. These results 

agree with what have been found in previously published studies. Overall, the project provides a 

practical alternative method to extract biomechanical variables of various muscles and joints 

during slip movements that are difficult to measure. This is also the first study that utilizes 

OpenSimTM to analyze gait data under slippery conditions. Hence, the study will aid in the 

prediction of injury thresholds and location for slip-trip, as well as identify new movements and 
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relationships among muscle forces, joint angles and posture, which can be further applied to 

predict and reduce injury risks in clinical or athletic training conditions. 
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EQUATIONS USED IN VARIOUS OPENSIM TOOLS
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A.1 Weighted Squared Error 

𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐸𝑟𝑟𝑜𝑟

=  ∑ 𝜔𝑖(𝑥𝑖
𝑠𝑢𝑏𝑗𝑒𝑐𝑡

− 𝑥𝑖
𝑚𝑜𝑑𝑒𝑙)2

𝑚𝑎𝑟𝑘𝑒𝑟𝑠

𝑖=1

+ ∑ 𝜔𝑗(𝜃𝑗
𝑠𝑢𝑏𝑗𝑒𝑐𝑡

− 𝜃𝑗
𝑚𝑜𝑑𝑒𝑙)2

𝑗𝑜𝑖𝑛𝑡 𝑎𝑛𝑔𝑙𝑒𝑠

𝑗=1

 

(6.1) 

Where 𝑥𝑠𝑢𝑏𝑗𝑒𝑐𝑡 and 𝑥𝑚𝑜𝑑𝑒𝑙  are the three-dimensional positions of the 𝑖𝑡ℎ marker or joint 

center for the subject and model, 𝜃𝑠𝑢𝑏𝑗𝑒𝑐𝑡 and 𝜃𝑚𝑜𝑑𝑒𝑙are the values of the 𝑗𝑡ℎ joint angle for the 

subject and model, 𝜔𝑖 and 𝜔𝑗 are factors that allow markers and joint angles to be weighted 

differently [24]. 

A.2 Modified Newton’s Second Law 

𝐹𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 = ∑ 𝑚𝑖𝑎𝑖

𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠

𝑖=1

− 𝐹𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙  
(6.2) 

Where 𝐹𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 is the measured ground reaction force minus the body weight vector, 

𝑎𝑖 is the translational acceleration of the center of mass of the 𝑖𝑡ℎ body segment, 𝑚𝑖 is the mass 

of the 𝑖𝑡ℎ body segment, and 𝐹𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 is the residual force [24]. 

A.3 Activation Dynamics Model 

𝑎̇ =

{
 

 (𝑢 − 𝑎) ∙ [
𝑢

𝜏𝑎𝑐𝑡
+
𝑢 + 1

𝜏𝑑𝑒𝑎𝑐𝑡
]             𝑢 > 𝑎

𝑢 − 𝑎

𝜏𝑑𝑒𝑎𝑐𝑡
                                             𝑢 < 𝑎

 
(6.3) 
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Where 𝑎̇ is the time rate of change of the muscle activation, 𝑢 is the excitation and 𝑎 is 

the muscle activation, 𝜏𝑎𝑐𝑡 and 𝜏𝑑𝑒𝑎𝑐𝑡 are the time constants for muscle activation and 

deactivation [24]. 
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